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Design of Complex Biologically
Based Nanoscale Systems
Using Multi-Agent Simulations
and Structure–Behavior–
Function Representations
The process of designing integrated biological systems across scales is difficult, with
challenges arising from the modeling, understanding, and search of complex system
design spaces. This paper explores these challenges through consideration of how sto-
chastic nanoscale phenomenon relate to higher level systems functioning across many
scales. A domain-independent methodology is introduced which uses multi-agent simula-
tions to predict emergent system behavior and structure–behavior–function (SBF) repre-
sentations to facilitate design space navigation. The methodology is validated through a
nanoscale design application of synthetic myosin motor systems. In the multi-agent simu-
lation, myosins are independent computational agents with varied structural inputs that
enable differently tuned mechanochemical behaviors. Four synthetic myosins were
designed and replicated as agent populations, and their simulated behavior was consist-
ent with empirical studies of individual myosins and the macroscopic performance of
myosin-powered muscle contractions. However, in order to configure high performance
technologies, designers must effectively reason about simulation inputs and outputs; we
find that counter-intuitive relations arise when linking system performance to individual
myosin structures. For instance, one myosin population had a lower system force even
though more myosins contributed to system-level force. This relationship is elucidated
with SBF by considering the distribution of structural states and behaviors in agent popu-
lations. For the lower system force population, it is found that although more myosins
are producing force, a greater percentage of the population produces negative force. The
success of employing SBF for understanding system interactions demonstrates how the
methodology may aid designers in complex systems embodiment. The methodology’s
domain-independence promotes its extendibility to similar complex systems, and in the
myosin test case the approach enabled the reduction of a complex physical phenomenon
to a design space consisting of only a few critical parameters. The methodology is partic-
ularly suited for complex systems with many parts operating stochastically across scales,
and should prove invaluable for engineers facing the challenges of biological nanoscale
design, where designs with unique properties require novel approaches or useful configu-
rations in nature await discovery. [DOI: 10.1115/1.4024227]

1 Introduction and Motivation

Successful design at the nanoscale (�10�9 m) typically requires
consideration of mechanical, thermal, and chemical forces that
contribute to stochastic behaviors and interactions among system
components [1]. The complex system behavior that emerges from
component interactions often spans multiple scales, thus resulting
in a design space that is difficult to traverse [2]. Solutions to these
complex problems often resemble natural system functioning [3],
such as the hierarchical organizations of cells and tissues, and there
is great potential for engineers to learn from, and utilize, natural sys-
tems toward the advancement of nanotechnology [4]. For instance,
natural motor proteins [5] have efficiencies much greater than syn-
thetic nanomachines and are therefore often re-implemented in
nanotechnologies including responsive materials [6], lab-on-chips
[7], and molecular detectors [8].

This paper explores how engineers may design synthetic motor
proteins with characteristics targeted for specific nanotechnolo-
gies and our approach is a significant contribution toward helping

engineers understand and improve the emergent performance of a
complex system. Emergence is a crucial mechanism of many
complex systems and is often considered unintuitive [2] and diffi-
cult to understand [9]. There is much debate on the definition of
emergence [10,11], in our context of emergence, we use the defi-
nition of the aggregate system behavior that occurs through col-
lective interactions of system components.

A domain-independent design methodology is introduced that
utilizes multi-agent simulations to model and predict the perform-
ance of emergent systems [12,13] and SBF representations to
facilitate navigation of the multiscale design space [14,15]. The
resulting methodology should enhance an engineer’s ability to
improve emergent system performance via component alterations.
The methodology is tested through a domain-specific application
of synthetic myosin protein design. Myosins are one of the most
well studied molecular machines, have played significant roles in
the emerging field of molecular powered devices [5], and have
additional applications in synthetic muscle [16], tissue engineer-
ing [17], and disease treatment [18,19]. The exploration of syn-
thetic myosins using formal design methods could also result in
the future discovery of novel myosin configurations with unique
properties, including those that either do not exist naturally or are
undiscovered—the potential of these discoveries is quite feasible
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when considering the tremendous rate that novel molecules and
functions are being uncovered [20,21].

1.1 Natural Myosin Functionality. Myosins are essential
components for cellular tasks including cytoskeletal scaffolding
[22], cellular division [23], and active diffusion [24]. Each task is
typically facilitated by a specific class of myosin isoforms [25,26]
(isoforms are proteins of the same species with slight structural
variations). In this paper, we focus specifically on Myosin II iso-
forms, the smallest power-producing components in muscle. Fig-
ure 1 illustrates four organizational levels of the complex
muscular hierarchy, from a complete muscle to an individual my-
osin. Muscles contain myofibril fibers in parallel and myofibrils
are composed of sarcomeres arranged in series, which are the
smallest contractile unit of the muscle. Each sarcomere consists of
actin protein filaments (filaments at the top and bottom of the sar-
comere, as shown in Fig. 1) arranged in parallel with thick fila-
ments that are myosin aggregates (middle filament in Fig. 1).

Myosins operate by cyclically converting the chemical energy
of one adenosine triphosphate (ATP) molecule to mechanical
energy [27] while powering sarcomere contractions. Contractions
among different muscles may vary greatly in terms of force, ve-
locity, and energy performance which is partly influenced by var-
iances in myosin isoforms and their corresponding mechanical
and chemical behaviors [28,29]. We define mechanical behaviors
as actions explainable in terms of physical forces and displace-
ments, such as how far a myosin moves an actin filament, whereas
chemical behaviors are defined as chemical reactions, such as the
likelihood of a myosin binding to actin. Both the mechanical and
chemical behaviors of myosins are stochastic due to thermal fluc-
tuations. Because thermal fluctuations lead to events that have av-
erage outcome values over many trials, their average values may
be considered as constants when input as parameter values for pre-
dicting the outcomes of mechanical and chemical behaviors at a
constant environmental temperature [1]. Although the stochastic
nature of the system components at the nanoscale makes each
individual myosin’s behavior unpredictable, when possibly quad-
rillions of myosins interact in muscle, a regulated behavior as a
whole emerges. Therefore, understanding myosin performance in
a multiscale context requires both an understanding of individual
myosins and their organization in a system.

1.2 Myosin Complexity. Although the entire muscular hier-
archy forms a single complex system, we argue that even subsys-
tems, such as the configuration of the sarcomere require treatment
as a complex system. According to a National Science Foundation
workshop on engineering complex systems [2], complex systems
consist of a large number of interacting components that may span

multiple scales of space and/or time. A sarcomere has possibly
15,000 myosins in addition to other molecules. These entities
interact through mechanical and chemical behaviors that require
milliseconds, yet enable a contractile event that could span a few
seconds.

Additionally, Complex systems also exhibit emergence,
namely, new behaviors that result from aggregated behaviors of
subsystems [2]. The emergent performance of a contractile event,
such as the force and speed of a filament, are enabled by the sto-
chastic behaviors of myosin and actin populations although nei-
ther myosin nor actin are individually responsible for the system
functioning. To state succinctly: although a sarcomere contracts,
myosins and actin do not. A contractile event is an emergent sys-
tem behavior that arises from a specific organization of myosin
and actin. Any force-responsive system utilizing groups of myo-
sins should consist of a similar organization at the myosin and
actin level (i.e., myosins stochastically interacting with a travel-
ling filament), thus the design of myosin-based technologies sug-
gests a complex systems approach.

Because of the limitations in human understanding of complex
systems, we chose to express myosin systems with a SBF repre-
sentational scheme, which is considered a language for under-
standing [15] and designing complex systems [14]. In SBF
terminology, structures refer to the elements of a system, behav-
iors are the causal chain of mechanisms that allow the structures
to achieve their outcome, and functions refer to the role an ele-
ment has within a system. To illustrate SBF and highlight nano-
scale design challenges, a well-understood two-stroke motor and a
myosin are juxtaposed in Figs. 2–4.

Both motors have similar moving structural components (e.g.,
the macroscopic crankshaft, connecting rod, and piston resemble
the myosin hinge, lever arm, and head in Fig. 2), although a myo-
sin requires a nearby actin binding site to initiate the chemical
reactions necessary for subsequent behaviors. Each motor has a
series of structural states (labeled images in Fig. 3) where compo-
nents have varied spatial and temporal relationships that enable
subsequent causal chains of behavior (numbered arrows in Fig. 3).

Fig. 1 Schematic of a muscle hierarchy plotted by approximate number of compo-
nents and approximate physical size (length by height)

Fig. 2 A schematic a two-stroke motor and a myosin with la-
beled structures [30]
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Both motors generate power cyclically; however, a two-stroke
motor follows a deterministic set of actions (fuel–air mixing, then
fuel ignition, followed by exhausting) while the myosin has multi-
ple possible behaviors that are governed stochastically. Figure 3
will act as a reference in the subsequent discussion that details a
myosin’s mechanochemical behaviors.

Similar to the macroscopic motor, a myosin must begin its
cycle by accepting fuel, but does so by storing energy as mechani-
cal strain through ATP dissociation into adenosine diphosphate
(ADP). The myosin has a stochastic chance of attaching to actin
based on binding site proximity and filament velocity and there-
fore remains in its “Storing Energy” state for an indefinite dura-
tion. When the myosin attaches to actin, it immediately begins its
“Power-stroke” state and produces mechanical force during
behavior “1a.” While power-stroking, the myosin has a chance of
chemically detaching with behavior “1b.” Once the myosin has
zero strain it begins accumulating negative strain during its
“Drag-stroke” state because other motors in the system continue
exerting positive force on actin. The myosin remains attached
until the strain of the motor head reaches a threshold and mechani-
cally detaches via behavior “2a.” The myosin also has a chance of
detaching chemically during its drag-stroke as indicated by path
“2b.”

SBF is a teleological language and therefore a global function
is chosen prior to embodying structures and behaviors. For design
purposes, only highly likely emergent behaviors of a system
require detailed modeling and a designer, if possible, should
ensure detrimental emergent behaviors are avoided. For instance,
although one two-stroke motor is sufficient for powering a single
functional system, one myosin is not sufficient because the actin
filament may diffuse beyond a myosin’s reach if no other myosins
are attached, which is an undesirable emergent behavior. As long
as the designer ensures that the system operates with at least one
myosin attached at a given time (accomplished by including a sig-
nificant number of myosins in the system), then explicit diffusion
modeling is likely superfluous since it is a highly improbable
emergent behavior.

The prediction of emergent behaviors for a particular system
embodiment requires an accurate assessment of how varied myo-
sins interact to influence system performance, which we propose
is feasible through multi-agent simulations—an approach that has
shown success in simulating emergent systems in a number of
fields of study [12,13,31]. A multi-agent simulation approach

allows for representing varied individual myosins as computa-
tional objects that autonomously interact in a virtual environment.
An aggregated measurement of their interactions would describe
their emergent performance.

In our approach there are two discrete organizational levels of
interest; appropriate SBF terms are used for each level to promote
clarity. At the individual myosin level, structure refers to the mo-
lecular configuration of a myosin and behaviors refer to a myo-
sin’s mechanical or chemical behaviors. We do not go into detail
about function at this level, since improving global functioning of
the system (i.e., a global objective function) should be the primary
concern of a designer, although an implicit assumption of the
model is that normal myosin functioning is maintained. At the
system level, there is no explicit structure (since structure is a
property of individual components); however, the system’s orga-
nization does influence its functioning (i.e., spatial and temporal
relationships among components). When referring to the system
behavior, which is the aggregate level behavior of all components
in the system, we explicitly state “system behavior,” “emergent
behavior,” or, in the context of designing for a global objective
function, “system performance.”

Through coupling a clear SBF terminology with the predictive
power of a multi-agent simulation, we expect to enable a means
for designers to decouple the variances in individual myosin
behaviors from system performance, and therefore achieve a
deeper understanding of how to reconfigure the system for
improved performance. Although our application is focused on
systems of synthetic myosins, the combination of SBF and multi-
agent simulations is domain-independent, which suggests the
methodology is extendible to similar nano- and multiscale com-
plex systems.

2 Background

The first background section focuses on understanding and rep-
resenting complex systems through SBF representations followed
by multi-agent algorithms, synthetic myosin experiments, and
mechanochemical modeling approaches.

2.1 Understanding Complex Systems. Complex systems
possess specific organizational traits (Sec. 1.2) that differentiate
them from merely complicated systems [32]. Studies investigating
complex problem solving have shown that complex systems
require strategies different from typical problems, with intuitive
approaches often outperforming analytical approaches [33]. Sev-
eral cognitive studies have demonstrated that emergence is a diffi-
cult concept to understand, and often causes difficulties in
determining how components of a system affect the functioning
of the system as a whole [9,15].

Past engineering studies have investigated SBF representations
as a language for designing and understanding complex systems,
with a recent focus on natural systems at the macroscale [14]. It
was found that when students interacted with a multi-agent system
that represented a complex aquarium system, they developed a
stronger understanding of the system and its interactions [14].
Other investigations have outlined how SBF representations could
improve the reasoning process of computational agents during the
design process [34].

2.2 Simulating Emergence. Multi-agent simulations are
widely used in multiple fields for modeling emergent system
behavior via interactions of computational agent populations [12].
Specific applications include social networks [13], ecosystems
[14], and molecular systems [35]. In engineering design, multi-
agent simulations have been used to model design team interac-
tions [36] and teams of computational agents have optimized
designs while searching complex spaces [31,37].

NFSim is an agent-based simulation for determining chemical
behaviors among biological components through consideration of

Fig. 3 A schematic of structural states and behaviors for a
two-stroke motor and a myosin [30]. Each labeled image repre-
sents a structural state and each numbered arrow represents a
behavior.

Fig. 4 A schematic of the function of a two-stroke motor and a
system of myosins [30]
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a discrete number of reactants [35]. This contrasts to traditional
ways of predicting chemical reactions, which usually assume a
large number of reactants enables the consistent functioning of a
system. However, these traditional methods often do not provide
insights into the component behaviors within a system or their
spatial and temporal relationships, which is a strength of agent-
based approaches.

2.3 Modeling and Designing Myosins. The swinging lever-
arm model is a well-accepted theory for describing myosin behav-
ior [1] and has a strong body of supporting evidence [38–40].
X-ray crystallography in recent years has allowed for a more
accurate mapping of key components in the swinging lever-arm
model to the molecular structure of myosins such as the myosin
head, myosin lever, and actin filament as indicated in Fig. 5.

Structural variations in the myosin head and lever correspond
to behavioral differences among myosin isoforms and it is possi-
ble to alter these structures artificially to design synthetic myosins
with desirable behaviors. Experiments have demonstrated that
replacing a myosin lever arm with a similar protein structure of a
different length, as shown in Fig. 6(a), affects how far a myosin
displaces a filament [41]. It is also possible to swap the head struc-
ture, as shown in Fig. 6(b), or alter its molecular structure to mod-
ulate a myosin’s chemical behaviors [42].

Emergent system performance is commonly measured using
motility assays (Fig. 7) where myosins placed on a microscope
slide cyclically apply force to actin filaments and the filament ve-
locity is measured. Results from motility experiments have
informed analytical and simulation myosin modeling approaches.
Common to all models is the need to predict filament velocity by

considering the coordinated contributions of multiple myosin
motors interacting with actin asychnronously. Analytical
approaches often utilize differential equations to describe the av-
erage behavior of a myosin [1,44–46]; however, assumptions
required to generate and solve these differential equations makes
model modification and solving difficult. In past work, we utilized
an analytic model and found it required modifications to accu-
rately predict how synthetic myosin designs affect emergent per-
formance [47]. Past simulations have tended to concentrate on
how myosins are geometrically arranged in muscular components
[48,49], with individual myosins following similar assumptions
found in the analytical methods. The specific embodiments of my-
osin systems in these simulations limits their generalization.

Our current choice of a multi-agent simulation has the advant-
age of modeling stochastic chemical behaviors while also retain-
ing spatial information required for evaluating mechanics that is
often ignored in more abstract formulations. Our approach enables
tracking the distributions of myosin behaviors and states, rather
than assuming their average trends which is common in analytical
models. A drawback of the multi-agent simulation is the greater
computational effort required to obtain data relative to other meth-
ods, although our implementation requires short run-times in prac-
tice. Multi-agent simulations are also known for facilitating an
intuitive understanding of a system [14] and are generally flexible
algorithms that enable quick modification which is beneficial as
more refined understandings of mechanochemical dynamics are
developed.

3 Virtual Laboratory Architecture

Our goal is to build a virtual environment that simulates the
functioning of a myosin system, with each myosin programmed as
an independent computational object (i.e., agent). The virtual
environment consists of myosins interacting with a single actin fil-
ament and is described in Sec. 3.1. Section 3.2 describes a mathe-
matical description for a myosin’s mechanical and chemical
behaviors informed by a myosin’s molecular structure. Section
3.3 details how myosins are programmed as agents and how they
interact with the actin filament. Section 3.4 summarizes the imple-
mented parameter values.

3.1 Virtual Environment. All objects in the virtual environ-
ment are constrained to a two-dimensional plane as shown in Fig. 8.

Fig. 5 A schematic of key myosin structures labeled on the
molecular representation via X-ray crystallography [25] on the
left and an illustration on the right

Fig. 6 A schematic of engineering synthetic myosin isoforms
with (a) altered mechanical behaviors via lever swapping [41] or
(b) altered chemical behaviors through replacement of a myo-
sin’s head structure [43] (relative size of up/down arrows repre-
sents the magnitude of a myosin’s attachment/detachment
chemical rate constant)

Fig. 7 A schematic of myosins in a motility assay with actin fil-
ament velocity and forces at each binding site indicated

Fig. 8 Rendering of the virtual environment of twenty five myo-
sins and a long actin filament. Spacing parameters are indi-
cated in the zoomed-view.
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Figure 8 also illustrates the computational parameters that repre-
sent the spatial relations among components. The environment
models myosins that are evenly spaced at xs length intervals with
stationary tails. Myosin heads and lever arms move and interact
with binding sites. The distance between a myosin head and the
nearest available binding site xnb is allowed to have positive and
negative values. All myosins interact with the same infinitely long
actin filament with binding sites spaced xb distance apart and the
filament moves at a positive steady-state velocity relative to the
myosins (moves to the left in Fig. 8). The infinite filament length
assumption ensures that all myosins always interact with the same
filament. This virtual setup is equivalent to having actin filaments
of equivalent length sliding past myosins one after another. In
practice, controlling the system with such precision would be
challenging; however, the current level of abstraction enables
results that are applicable to a number of differently configured
myosin-based technologies.

3.2 Modeling Myosin Structures and Behaviors. A myo-
sin’s mechanochemical cycle (Fig. 9(a)) includes three states
(Storing Energy, Power-stroke, and Drag-stroke as indicated by
illustrations of different myosin structural states and correspond-
ing numbers), three chemical behaviors (“Attachment,” “Early
Detachment,” and “ADP Release,” as indicated by the labeled
arrows), and one mechanical behavior (“Mechanical Detach-
ment,” indicated by a labeled arrow).

During a myosin’s Storing Energy state, it has converted an
ATP into ADP, is assumed to store the energy as a linear elastic
element, and is ready to attach to an actin binding site. Since the
filament is moving at a constant velocity, there is a limited amount
of time for the myosin to attach to a binding site as it passes. Dur-
ing this time there is a rate constant kON that represents the proba-
bility of attachment (in Fig. 9, the likelihood for a myosin to
switch from state “0” to state “1”). If the myosin does not attach,
the potential for binding will not occur again until the next site
moves into a close proximity. The duration of possible binding
time is determined by how long a binding site remains in a myo-
sin’s “interaction-zone.” The interaction-zone xz represents how
close a myosin head must be to a binding site in order to have a
chance to attach. It is assumed that the myosin head in the Storing
Energy state is at position dþ relative to a myosin’s equilibrium
position in the environment. The distance dþ represents the
amount of energy stored as strain in the myosin before attachment.
When a myosin binds to actin, the strain e is equal to xnb (when
xnb represents the distance of the nearest binding site relative to a
myosin head’s zero strain position).

Upon attachment, the myosin begins its power-stroke and gen-
erates force in the same direction that the filament travels based
on its stiffness j and strain such that the force as a function of
time t is

f ðtÞ ¼ j � eðtÞ (1)

While attached, the myosin’s strain steadily decreases until it
reaches zero. During this time, the myosin has a chance to detach
from the filament as governed by the rate constant keOFF (repre-
sented as the Early Detachment behavior in Fig. 9). If the motor
remains attached until the strain reaches zero, it switches to its
drag-stroke state. During the drag-stroke, the strain increases as
the myosin produces force in the opposite direction of the filament
velocity. The oppositely strained motor has a structural conforma-
tion that enables detachment from the filament when the myosin
releases its held ADP. This chemical behavior occurs with fre-
quency kOFF and is referred to as ADP-Release.

If the myosin remains attached without undergoing an ADP
release, then its strain continues increasing, thus stretching the
myosin arm and head. At some point, this strain will exceed a
threshold emd and the myosin will detach mechanically as indi-
cated by the Mechanical Detachment behavior in the diagram.
There is no definitive value of emd for natural or synthetic iso-
forms; however, empirical evidence suggests it is approximately
2 � dþ, which we use for our implementation [50]. Detachment
marks the completion of the cycle, with the myosin assumed to
remove its ADP and utilize a new ATP. Regardless of detachment
behavior, a myosin always begins the next step of the simulation
in its Storing Energy state.

3.3 Modeling Myosins as Agents. In multi-agent simula-
tions, agents are independent computational objects that perform
actions in a virtual environment according to a set of logical rules
programmed into each agent. In our myosin application, the agent
logic-circuits shown in Fig. 9(b) represent a myosin’s mechano-
chemical states and behaviors. The agents in our system are not
controlled by a manager; each agent makes independent decisions
by sensing the environmental conditions, assessing the action to
best change the state from its perspective, and then implementing
that action. The myosin logic circuits are designed to reflect the
physics of a myosin’s mechanical and chemical behaviors. Agents
are capable of storing data about their own actions, such as their
current strain, structural state, the location of the nearest binding
site, and their last method of detachment. Emergent system per-
formance is measured by aggregating the data stored by each my-
osin agent at a particular point in time.

Agents do not interact with one another, but do interact with
the same actin filament. During the simulation, first the position of
the actin filament is updated along with the position of any myosin
heads attached to the filament. Next, all agents (in parallel) deter-
mine whether they attach or detach to the filament based on the
position of binding sites and their current state. Agents have three
possible states corresponding to the structural states of myosin
(Storing Energy, Power-stroke, and Drag-stroke as shown in Fig.
9(a)). Depending on an agent’s state, the agent follows a set of
rules representing the behaviors of attaching and detaching to the
filament. These rules are illustrated in Fig. 9(b), with each large
block representing a different myosin structural state. An agent’s

Fig. 9 Modeling myosin agents. (a) A myosin’s structural states and mechanochemical behav-
iors that are (b) simulated by each computational myosin agent’s logic circuit.
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turn is defined as all of the rules it is allowed to follow during one
step of the simulation.

One “Start” circle exists for each state, indicating where a myo-
sin agent begins following rules based on its current state. The
agent continues following rules until it eventually reaches an
“End” rule that ends its turn. The rules a myosin follows are based
on checks that are either deterministically based on the current
value of a myosin’s strain parameter (such as the Mechanical
Detachment check in Fig. 9(b)) or stochastic checks based on rate
constant parameters (such as the ADP-Release check in Fig. 9(b)).
Stochastic checks are calculated by comparing a random floating-
point value between zero and one, labeled as Random in Fig. 9(b),
and the rate constant of interest. When dT is the time passed dur-
ing one step of the simulation and k is the rate constant that gov-
erns an agent’s likelihood of undergoing a chemical reaction
during its turn, the probability P that the agent will undergo the
reaction is

Pðk; dTÞ ¼ k � dT (2)

A spatial step dX is defined as the distance an actin filament
moves during one time step of the simulation based on the steady-
state filament velocity v such that

dT ¼ dX

v
(3)

The spatial step and time step should be small enough to accu-
rately capture the physics of the system. For instance, if a myosin
has an interaction-zone range of 1 nm, then the spatial step should
not be larger than 2 nm. Our implementation uses a spatial step-
size of 0.1 nm, and adjusts the time step using Eq. (3). Initially, all
agents are set to state 0. Each time a myosin detaches it records its
method of detachment (e.g., Early Detachment from Figs. 9(a)
and 9(b)). Once every agent has detached (via any method of
detachment) at least once, a data point is collected representing
that time point in the simulation. Subsequent data points are col-
lected once all agents attach and detach at least one more time.

3.4 Configuring Synthetic Myosin Isoforms. Initially, myo-
sin agents are configured based on values empirically measured
for one isoform, thus allowing for later comparisons with the em-
pirical data and an analytical model. Table 1 has a listing of each
computational parameter required for the simulation, as described
previously, and their values used. The virtual environment param-
eters are used to configure the spatial relations among myosin
agents and the actin filament. The myosin isoform configuration
parameters are values that describe each agent and are imple-
mented as an agent reasons through their logic-circuit (Fig. 9(b))
during their turn. For instance, the location of the nearest binding
site, the interaction-zone size, and power-stroke distance allows
an agent to determine whether it is near enough to a binding site

for an attachment attempt. An agent decides whether it is sup-
posed to attach or detach from the filament based on chemical rate
constants that are converted into probabilities via Eqs. (2) and (3).
An agent’s strain is used to determine when it changes from its
power- to drag-stroke structural states, when it mechanically
detaches, and its force-production via Eq. (1) when data is
aggregated.

Parameter xb is the empirically measured value for the distance
between binding sites on actin [1]. The space between each myosin
xs is large enough to ensure noncompetitive binding, which is re-
flective of muscle functioning. However, in vitro approaches have
packed myosins on a microscope slide with as little as 10 nm of
space separating each myosin [51]. The spring constant j is
inferred from the force a myosin exerts on average at zero velocity
[1]. dþ represents the linear distance a myosin head moves as the
lever arm rotates when storing energy (i.e., the power-stroke dis-
tance), and is based on empirical values for the typical power-
stroke distance of skeletal myosins [50]. The size of a myosin’s
interaction-zone is difficult to determine empirically and may fluc-
tuate based on a number of factors such as the stiffness, tempera-
ture, and attachment rate of myosins. We assume a small value that
is in the acceptable range suggested by empirical evidence [1].

The chemical rates for a myosin detaching during its power-
stroke keOFF and detaching during its drag-stroke kOFF are both
empirically informed values. The chemical rate of attaching to
actin kON when a binding site is present is difficult to measure
empirically. It is inferred by assuming that a myosin operating at
maximum velocity has a cycling rate KC that is limited by its
attachment rate (since the other aspects of the cycle occur with a
negligible length of time). The attachment rate constant is then
determined by the more commonly measured cycling rate
(�25 s�1 for chicken skeletal myosins [1]) and the following
relation:

kON ¼
KC � xd

xz

(4)

4 Simulation, Experimentation, and Analysis

Initially, the predictions of the multi-agent simulation are vali-
dated using values of myosin structures and behaviors that are
empirically informed. Next, a virtual experiment is conducted to
compare the emergent system functioning of three additional
novel isoforms. Since each of these systems always fulfill the
same function of powering a motility assay, we refer to varying
metrics of system performance to compare how individual myosin
designs affect emergent functioning.

Simulations were computed at �25 GFlops and implemented
with Java SE 7 and JavaFX 2.0 with graphical renderings postpro-
cessed (Figs. 8 and 10). All simulations model 25 myosins and
collect data at 1000 time points for each steady-state filament ve-
locity (recorded after each myosin completes at least one cycle as
described in Sec. 3.3), with most simulations requiring less than a
second of computing time. Rendered videos for select simulations
are available online as noted in Fig. 10.

4.1 Simulation Validation. To validate the multi-agent sim-
ulation, Table 1 values for myosin structures and behaviors were
implemented to simulate a “datum” isoform that is compared to
empirical results and an analytical model [1]. Renderings of a sim-
ulation with a filament velocity of 3 lm/s for 25 myosins are pre-
sented in Fig. 10, with the summation of forces from all myosins
on the filament indicated by Fsys. Initially, all myosins are
detached from the actin filament and in the Storing Energy state.
In the first panel, a myosin has just attached to the filament and is
generating 15 pN of force in its Power-stroke state (as indicated
by the size and directionality of the arrow). In the second panel,
the myosin has entered its Drag-stroke state while another myosin
has attached and is generating positive force. In the third panel,
these myosins remain attached as the filament travels and their

Table 1 Parameter values used for configuring the virtual envi-
ronment and myosin isoforms [1]

Parameter Description Units Value

Virtual environment
xb Distance between binding sites nm 36
xs Distance between myosins nm 29
— Length of actin filament nm 1
Myosin isoform configuration
dþ Power-stroke distance nm 5
j Stiffness pN/nm 4.1
xz Interaction zone nm 0.5
kON Attachment rate s�1 900
keOFF Early detachment rate s�1 3
kOFF ADP release rate s�1 1600
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force generation becomes equal and opposite to one another, thus
resulting in zero system force. A myosin’s force generation
changes because the heads move with the filament, thus decreas-
ing a myosin’s strain over time. In the final panel, one motor
remains attached in its Drag-stroke state and therefore negative
force is exerted on the filament.

The state of the system at each point in time is nondeterminis-
tic, so predicting the average emergent system response requires
data from many myosins and time points. The time-average force
per myosin for a system containing Nm number of myosins with
data collected at Np time points is determined by

hf ðvÞi ¼ 1

Np � Nm

XNp

i¼1

XNm

j¼1

jj � ejðv; tiÞ (5)

As long as the product of Nm and Np is large, then the time-
average response of different experiments are expected to remain
consistent; all of our simulations use 25 myosins with 1000 time
points. The aggregate force response was found for thirteen differ-
ent velocities and the resulting curve is plotted in Fig. 11 along
with empirical and analytical data.

The validation demonstrates a close relation between the simu-
lated results and both the empirical data and analytical model [1].
The R squared value is �0.975 when the analytical curve is con-
sidered as the model values for the observed empirical data and
the R squared value is �0.995 when the analytical curve is consid-
ered as the model values for the observed simulated data. The
hyperbolic relation between force and velocity reflects the force–
velocity relationship of muscles at the macroscale [27] and myo-
sins at the nanoscale [52].

4.2 Virtual Experiments With Synthetic Isoforms. A vir-
tual experiment was conducted that simulates four systems popu-
lated by synthetic myosin designs with one altered mechanical or
chemical behavior parameter (Table 2) while all other computa-
tional parameters retain Table 1 values. Extrapolated isoform per-
formance is validated qualitatively in subsequent discussions.

The first system contains myosin isoforms with an increased
rate of attachment kON, thus increasing the likelihood that a
detached myosin will attach to the actin filament. The second sys-
tem has myosins with a decreased kOFF rate constant, thus myo-
sins are more likely to detach chemically during their drag-stroke.
The last myosin isoform is designed with a decreased dþ distance,
which reduces the amount of initial strain a myosin has upon bind-
ing and reduces the myosin’s power-stroke distance. These param-
eters are realistic values that future wet-lab experiments could

Fig. 10 Renderings of the simulation for four time points when the filament veloc-
ity is 3 lm/s. The resulting system force experienced by the filament is indicated
for each panel. Simulation renderings are viewable at http://www.andrew.cmu.edu/
org/IDIG/SBFSimu.htm.

Fig. 11 Time-average force per myosin at different filament
velocities using our simulation (squares). These results were
compared with previously published analytical and empirical
data [1], depicted by lines and circles, respectively.

Table 2 Configuration of synthetic myosin designs used during virtual experiments. Each myosin is identical to the datum iso-
form of Table 1, except for one altered parameter: The high attachment myosin has an increased kON rate constant, the low detach-
ment isoform has a decreased kOFF rate constant, and the short stroke isoform has a decreased d1 distance.

Behavior
Parameter Units

Datum High attachment Low detachment Short stroke

kON s�1 900 2700 900 900
kOFF s�1 1600 1600 800 1600
dþ nm 10 10 10 5
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replicate [41,42,53] or engineers could use to manufacture myo-
sins for implementation in nanotechnologies.

The multi-agent simulation was run at 21 different velocities
between 0.1 lm/s and 10 lm/s with aggregate data for each sys-
tem determined using the same process from Sec. 4.1. Addition-
ally, the number of myosins attached at each time point was
tracked to inform the system’s force output [1,54]. Results are
plotted in Fig. 12, with each curve representing different systems
of myosin isoforms.

Each system has a unique force–velocity and attachment curve.
The increased attachment system has higher force values over all
velocities in comparison to the datum until its maximum velocity
is reached (maximum velocity occurs when hf ðvÞi ¼ 0 from Eq.
(5)), while the decreased detachment and short stroke systems
have lower force values per velocity and lower maximum veloc-
ities in comparison to the datum. Additionally, the short stroke
system has a lower maximum force. These changes in maximum
velocity reflect empirical evidence, thus offering validation for
our extrapolated isoform predictions [29,55].

Without considering myosin behaviors, it is difficult to link the
variations in molecular structures to system performance. For
instance, since only attached myosins produce force it is often
claimed that a system with more attached myosins will have
higher forces [1,54]. However, in Fig. 11(b) this is only true for
the comparison between the increased attachment system and

decreased stroke system to the datum system—the decreased
detachment system has a higher percentage of myosins attached
than the datum system, yet less force per velocity and maximum
velocity. To understand why, we propose an approach using SBF
to investigate how individual myosin structures and behaviors
relate to a system’s functional performance.

4.3 SBF Analysis of Virtual Experiment. To ensure the
generalizability of our method, only information about agents that
is domain-independent is tracked for the SBF analysis, such as the
distribution of structural states and myosin behaviors in the agent
population. Three detachment behaviors are tracked: if a myosin
detaches early (early detachers), detaches via ADP release (ADP
releasers), or detaches due to mechanical strain (mechanical
detachers). The percent of myosins that express each of these
detachment behaviors at each velocity, referred to as “Behavior
Expression,” is calculated by determining the total number of
myosins that followed a particular behavior and dividing it by the
total number of myosins in the system, which is then time
averaged.

The behavior expression plots in Fig. 13 demonstrate that the
increased attachment and datum systems have identical behavior
expression that contrasts with the nearly identical behaviors of the
low detachment and short stroke systems, thus reflecting the same
relation among systems and their maximum velocity values. The

Fig. 12 Aggregate performance curves for each simulated system consisting of isoforms from
Table 2. (a) The time-average force per myosin and (b) the percentage of myosins in a population
that are attached, both plotted against steady-state filament velocities.

Fig. 13 Percentage of a myosin population undergoing each detachment behavior for each
simulated filament velocity. Each plot A-D represents a system consisting of isoforms from Ta-
ble 2. Each line specifies the percentage of myosins detaching via each mechanism described
in Fig. 9, with different dash styles correlating to different detachment behaviors.
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maximum velocities occur near the point when mechanical
detachers begin having more prominence in all four systems, thus
suggesting a link between the behavior expression in the system
and system performance, which can further be linked to individual
myosin behaviors. For instance, the decreased detachment system
increases the drag-stroke length of a myosin and the short stroke
system has myosins that mechanically detach at lower strains
(since emd ¼ 2 � dþ, as described in Sec. 3.2), thus providing an
explanation for the rise in mechanical detachers at lower veloc-
ities. All systems have a low number of early detachers, suggest-
ing that early detachers do not strongly influence system
performance, as we have previously demonstrated [56].

The behavior expression plots do not provide insights for why
system force–velocity curves differ though, which is necessary for
explaining how increasing the number of force-producing motors
can lower system force. Therefore, the distribution of structural
states in the system was also investigated. The state expression for
the power- and drag-stroke states was recorded and generated
(Fig. 14) using the same process as Fig. 13. In addition, the sum-
mation of the two-states indicates how many motors are attached
which reflects the results in Fig. 11.

Figure 14 results demonstrate a unique distribution of states
across systems. At the point near maximum velocity, the number
of power- and drag-strokers becomes nearly equal meaning the
total system force is zero even though myosins are still attached
and producing force in equal and opposite directions. When com-
paring the low detachment system to the datum, it has more
motors attached, but the same number of power-strokers and a
higher number of drag-strokers. Therefore, it is producing less
overall system force due to the increase in attached motors
producing negative force, which elucidates our previously
counter-intuitive finding that a myosin system with more motors
producing force could have a lower system force in comparison to
the datum system. The short stroke system, however, has much
fewer motors of both power- and drag-strokers in comparison to
the datum, which describes its lower force (in addition to its
reduced strain).

Additionally, variations in state expression also link to the
structural and behavioral variations among isoforms. The
decreased detachment population has more drag-strokers because
motors spend more time attached to the filament before chemi-
cally detaching during their drag-stroke. The increased attachment

system increases the total number of motors attached because
each myosin is more likely to attach to a binding site on actin as it
passes. The short stroke system has myosins with shorter power-
stroke distance, causing them to detach mechanically at lower
strains and velocities in comparison to the other motors and pro-
duce less force in the power-stroke state.

5 Discussion

During the Introduction (Sec. 1.2), we hypothesized that multi-
agent simulations could accurately recreate the emergent behavior
of myosin systems and that SBF representations could aid a
designer’s navigation of the complex design space. The discussion
will address both of these conditions and also detail how these
processes combine to form a domain-independent methodology
that is extendible to other complex systems.

5.1 Multi-Agent Simulation Evaluation. The emergent sys-
tem performance predicted by the multi-agent simulation re-
created empirical trends for the natural datum isoform while
extrapolated isoforms were validated qualitatively. We found that
lowering the detachment rate and shortening the stroke affected
the maximum velocity of the system which agrees with empirical
findings [29,55]. Furthermore, sources have indicated that the
early detachment rate constant should only influence the system at
low velocities [1] while mechanical detachers should only influ-
ence the system at higher velocities [50]; both of these results
were reproduced by the multi-agent simulation [56].

For all designed isoforms, our model predicted similar results
to predictions of a past analytical model. Yet our model produces
the emergent performance curves through simulation of myosins
from the bottom-up (i.e., trends emerge from agent interactions)
and does not require a priori assumptions of how parameters
influence system functioning, as required for analytical modeling
where many trends have explicit equations. The agent model ena-
bles a designer to reason about how myosin behaviors relate to
system performance via virtual experiments, thus providing
designers with richer information in comparison to the analytical
model. We utilized the multi-agent simulation to investigate only
one general type of regulated emergence [11], namely, an emer-
gence that can be controlled through teleological design
approaches (in this controlled study, a single actin filament

Fig. 14 Percentage of a myosin population that are undergoing power- and drag-stroke states,
and the total percentage attached for each simulated filament velocity. States correlate to those
found in Fig. 9 and are indicated by different dash styles for each line. Each plot A-D represents
a system consisting of isoforms from Table 2.
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propelled by a population of myosins). However, due to the flexi-
bility of agent-based models, more specific scenarios of emer-
gence, such as the cooperative dynamics of closely packed
myosins competing for binding sites, may be explored with only a
few model modifications.

The multi-agent simulation is well-suited for multiscale com-
plex systems in general. For instance, when the force from a myo-
sin is multiplied by the number of myosins in a typical cross-
section of muscle [27], approximately 30 N/cm2 of force is found,
which is the typical force output per area of muscles. Therefore,
this approach has characterized the aggregate response of a highly
complex multiscale system spanning nearly ten orders of spatial
scale with a significantly simplified model of the system. The sim-
ulation approach also enables designers to configure synthetic
myosins and quickly gain feedback of their effects on system per-
formance. Such information is invaluable to the design process
and could aid engineers in configuring optimized systems or
become the basis of an automated design tool.

5.2 SBF Representations Evaluation. It was difficult to
determine how individual myosin variations influenced system
performance until the myosin behaviors were investigated with an
SBF approach. Specifically, we addressed the counter-intuitive
relation that having more motors producing force may actually
lower system force when additional motors produce negative-
force. These counter-intuitive relations arise in part because myo-
sins have mechanical and chemical behaviors that are both influ-
enced through changing a single molecular structure. For instance,
decreasing the detachment rate of a myosin, a chemical behavior,
also increases the length of a myosin’s drag-stroke, a mechanical
behavior. A second example occurs when shortening the stroke
because less myosins chemically detach during their power-
stroke. SBF representations help designers overcome these diffi-
cult couplings through offering multiple routes and means of
viewing myosin interactions via their structural states or behavior
expression.

There are two general design cases in myosin-based technolo-
gies that demonstrate the practicality of SBF reasoning: technolo-
gies that always operate at a zero-load case (such as molecular
sensors [57]), thus operating at the system’s maximum velocity,
and technologies that require force-production (such as nanoac-
tuators [16]), thus requiring consideration of the entire force–
velocity curve. Both of these systems would have increased per-
formance for synthetic myosins with increased detachment rates
and lengthened strokes that raise the force-per velocity and maxi-
mum velocity of the systems. However, systems also require con-
sideration of energy performance which is primarily influenced by
the myosin attachment rate. Since attachment rate has no effect on
the maximum velocity, it would be minimized for the zero-load
case but requires more careful consideration among power and
energy trade-offs in the force-production cases.

SBF analysis also demonstrates that there are multiple routes of
configuring myosins to achieve an identical system performance.
For instance, the maximum velocity of systems with myosins of
decreased detachment rates and short stroke myosins were identi-
cal in our results. Therefore, an engineer may configure a design
through altering either parameter, thus motivating a decision
based on other factors such as the cost or effort required for gener-
ating or manufacturing novel nanocomponents.

5.3 Generalization of Design Methodology. Our methodol-
ogy was implemented with synthetic myosins, but the pairing of
multi-agent simulations and SBF is domain-independent and
could apply generally to complex systems. In summary, the meth-
odology consists of five steps that were demonstrated with our
synthetic myosin application:

(1) Our methodology applies to systems that consist of many
components and possibly have stochastic behaviors across
multiple scales; further, the systems must be representable

within the SBF framework. In Sec. 1.2, myosin systems
were demonstrated to fit these criteria as their structures,
behaviors, and functions were described.

(2) A virtual environment was then developed for simulating
the emergent system functioning of varied myosins agents
and Secs. 3.1–3.4 detailed their implementation. Specifi-
cally, the rules for how mysoins interact, how the physics
of the system is updated in discrete steps, and what parame-
ters are tunable were all described.

(3) The multi-agent simulation requires validation, as
described in Sec. 4.1. Empirical data was used to validate a
“datum” isoform and extrapolated myosin designs were
validated in Sec. 4.2 with additional details in Sec. 5.1.

(4) Because it is difficult to link how structural changes in sys-
tem components affects system performance, an SBF analy-
sis was utilized to track the structural states and behaviors
of components. In Sec. 4.3, we demonstrated how SBF rea-
soning could explain the counter-intuitive finding that hav-
ing more motors producing force actually lowers the
system force in some cases.

(5) Finally, the insights gained with the SBF analysis should
inform a designer of how to improve system performance
via alterations of subcomponents. Section 5.2 demonstrated
how two different classes of myosin-based technologies
could be improved through linking myosin structural altera-
tions to emergent system performance.

Our analysis requires no further domain-specific information
than what was required to produce the multi-agent simulation—
all of the design parameter influences were analyzed by tracking
the states and behaviors via a SBF representational scheme that
could represent components in a number of different systems.
Because the methodology requires a teleological identification of
an emergent behavior for proper systems functioning, it is best
suited for systems where designers are able to configure compo-
nents that enable a consistent type of emergent behavior. Of inter-
est, there are over twenty more classes of myosins, as well as
other species of molecular motors that could initially be explored
using this methodology [1,28]. In complex biological systems
beyond molecular motor applications, the chemical reactions and
simulation framework of the simulation are extendible, but spe-
cific agent implementations would vary contextually.

6 Conclusions

Design at the nanoscale often requires consideration of mechan-
ical, chemical, and thermal forces influencing system functioning
and systems often contain many components interacting stochasti-
cally to produce emergent behaviors. In this paper, a domain-
independent methodology for predicting emergent system
performance using multi-agent simulations and navigating
complex design spaces with SBF representations was presented.
Synthetic myosin motor design was investigated as a test case to
demonstrate the methodology in a specific biological domain.

One of the greatest benefits of the agent-based approach was
the accurate predictions it provided across multiple scales, which
considered changes in myosin molecular structures to an entire
muscle’s force generation. In comparison to traditional methods
of myosin modeling, the agent-based approach allows system
functioning to emerge from component interactions which offers
richer information concerning myosin-to-system level couplings.
The approach is also readily extendible to different systems and
types of emergent behavior. For instance, the combination of mul-
tiple myosin isoforms is common in muscle [28] but is often diffi-
cult to explore with traditional experimental and analytical
methods. However, the multi-agent implementation could be used
to investigate such phenomenon after only a few modifications.

Past SBF studies have focused on macroscopic systems where
component behaviors are often considered deterministic. How-
ever, at the nanoscale many components act stochastically which
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is reflected in our implementation through probabilistic agent
actions. We find that even though the actions of each myosin are
nondeterministic, the emergent performance of the system has
predictable outcomes with respect to varied isoform types. Thus,
engineers may design systems with a consistent and high degree
of performance at the global level which we demonstrated with
our SBF scheme through consideration of two different myosin
design applications.

The domain-independent design methodology is extendable to
many complex systems in general and has particular strengths in
applications where emergent behavior may be highly regulated
and in nanoscale mechanochemical applications. The methodol-
ogy should significantly bolster an engineer’s ability to configure
multiscale products, especially when considering the complex
nanoscale phenomenon our methodology seeks to address. We
envision our approach could be extended to reverse engineer myo-
sins that exist in vivo, thus aiding the discovery of how specific
myosins influence system functioning in nature in addition to
facilitating the design of high performance biologically based
nanotechnologies.
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